
Interactive Resizing
and other bits and bobs..

Some time ago, on the QL-Users' email list,
Ralf Reköndt wrote "..how nice [it would be] to
use the Windows facility of changing a window
size in the lower right edge of a window.."
(qlusers 30/11/2008, Program Updates).
Wouldnt it just! Thanks to Wolfgang Lenerz
and Marcel Kilgus, on later versions of SMSQ/
E we now have an interactive window move
routine that allows the user to click on the
window move button and visibly drag a window
to another location on the screen and drop it
there. If the platform is too slow to comfortably
move the contents with the window, you can opt
for just moving a representative outline instead.
This only works with a mouse, so if you use the
keyboard instead, or if you switch off the
feature, SMSQ/E reverts to the old Qram
method of moving the window by icon.

Outline resizing is probably the best we can expect

Ideally, interactive resize should be
implemented at the system level: Moving the
pointer to the edge of a window would change
the sprite to an appropriate Resize Sprite and the
user could just drag the edge to resize the
window and drop it again (by releasing the
mouse button) once the desired size had been
attained. A spare byte in the Menu Definition
could be used to indicate which of the four
edges and four corners of the window were
resizable.. Dream on.

In the mean time, the following demo program
attempts to achieve something similar here and

now. Due to issues in the lower layers of the
Pointer Environment [PE] it seems to be
impossible to achieve quite the same effect as a
typical Windows resize, but it works well
enough I think.

Just a small point: I dont try to update the
window's contents during resizing as this
requires a lot of computational power - like a
dedicated graphics chip! It is also not trivial to
achieve, and it seems unlikely that it could be
done in any standard way with the current PE
object model, though I could be wrong.

This program, wresz, demonstrates mainly three
techniques: 1) Interactive outline resizing, 2)
unconventional use of Application Windows
[AWs], 3) hidden Loose Items [LIs]. Incidental
to (2) are techniques for reading AWs by
dropping down to discrete routines when AWs
are encountered and handling the inherent
limitations (ie keystrokes are local to each AW).
I make no claims of being either the first or the
last word in how the desired effects may be
achieved, nor in the perfection of their
implementation, but I hope this demo will be of
use all the same. The controls are operated as
follows:

Move: Move the pointer to the titlebar and it
changes to a mini window move icon. Click
(HIT or DO with the mouse buttons) on the
titlebar and interactive move is initiated
according to your WM_MOVEMODE settings.
You can also move the window by hitting the
Ctrl+F4 key [CF4] anywhere in the window.
This turns on the internal window move sprite
which you move, by mouse or cursor keys, to
the desired location and then click again to have
the window redrawn there, as in the bad old
days.

Resize: Move the mouse to the Bottom Right
Corner [BRC] of the main window. The cursor
changes to the move corner sprite. Click on the
BRC and an outline of your window appears.
This can be resized between the minimum
allowed size and the maximum available size.
Click again and the window is redrawn at the
desired size. In the complete version of this
program, that I hope will be made available to
readers, the text contents of the window is
reformatted and displayed at the new size.
Resize can also be initiated by pressing the
function key Ctrl+F3 [CF3]. This immediately

fires up the resizing routine and you can resize
using the mouse or cursor keys.

Finally, ESCape [ESC]. Press ESC in any AW
without a handler and the program terminates.
Press ESC in the Move AW or in one of the

Resize AWs and the pointer jumps to the middle
of the window. You have to press ESC again to
quit. This demonstrates that key presses are
local to each AW. Great when you want that
behaviour, a nuisance when you dont.

Thanks to Marcel, Albin Hessler's EasyPointer
[EZP] toolbox has been updated to incorporate
most of the facilities of PE. In other
developments, George Gwilt has created an
alternative toolbox that lends itself better to the
Turbo world view, while Norman Dunbar
continues his mission of documenting, and
educating us in the ins and outs of PE. This is
good stuff and deserves our gratitude and
support.

I make no apologies, however, for being a dyed-
in-the-wool SMSQ/EasyPointer/QLiberator
adherent, as I have been so since their respective
beginnings, and they continue to provide good
mileage. wresz depends on those systems to
develop, compile and, to some degree, to run. I
leave it to the experts of those other faiths to re-
work or produce their own version of what I am
trying to show here. If you are acquainted with
QDOS/ EasyPEasy/Turbo, etc, with respect to
PE programming, you may find it not too
difficult to adapt it accordingly. The compiled

program should, however run on all systems
sporting PE2. As it stands, you will need to be
running recent versions of SMSQ/E (v3.13+),
EasyPointer (v4.09+) and QLib (v3.35+) to run
or develop this code further. You will also need
the latest ptrmen (V4.08+) toolkit (included

with EZP).

For this project youll first need to prepare a
suitable menu. The illustration shows my menu
design in EasyMenu. A 200x140 pixel window
with a titlebar containing an ESC button.
However, it isnt quite as simple as it looks! The
next picture, a composite, shows its other
components. There are two Information
Windows [IWs], the first being the titlebar, the
second creates a border around the ESC item, to
avoid messing up the display when the pointer
outlines it. Next there are three LIs: The ESC
item, and two hidden LIs. As you can see, the
latter have no dimensions and are placed in the
top left corner [TLC] of the window. Although I
have made them 0x0, I have offset their
positions to avoid confusing the application
(and the programmer!). I can no longer
remember whether this is strictly necessary in
the former case, as EZP and Wman have
evolved over the years. The ESC item's
attributes and selection key is what youd expect.
The two others' selection keys are CF4 and CF3
– or the standard keystrokes for Move and
Resize, respectively.

Finally, there are four Application Windows.
The first one is the Move item and covers part

Main window. Note the scaling flags at X, Y and X0

of the titlebar and is pixel-aligned to it so as to
be invisible. You cannot have a LI covering an

Composite of three EZP element menus

AW (or visa versa) so the AW runs from origin
0x0 to the edge of the ESC LI. It is borderless
with attributes the same as for the titlebar IW.
However, it has its own sprite. You could either
stipulate the sprite to be the standard Move
Window sprite or, as I have done, make a
miniature Move sprite of your own to go with it.
If you have more buttons on the titlebar you will
have to adjust the AW accordingly and you may
perhaps need more than one AW with the same
attributes and sprite to fill in the gaps. As you
will see later on in connection with the Resize
AWs, their function is easy to group as a single
item.

The next two AWs are the Resize bars. These
are two thin, borderless AWs of about 4x14
pixels located at the BRC of the main window.
Actually, one is slightly longer than the other so
as to reach right into the corner without
overlapping the other. Four pixels wide may be
too skinny for some; you may consider it rather
fiddly to find it with the pointer. I have made
my resize bars visible here, but they could just
as well have blended in with

Sample corner resize sprite

the main window border, only revealing their
existence when the pointer sprite changes to the
corner resize sprite (see illustration).

Many resize scenarios are possible, of course.
Using the same technique, you could provide
the facility to allow every edge and every corner
to be stretched, as most Windows programs do,
or just the bottom and/or right edges. But the
most useful compact version, to my mind, is the
BRC one demonstrated here.

The final preparation youll need to make is to
create an APPA file. EZP programmers will
know what these are and how to create them,
but others may require a short explanation:
APPA files consist of a collection of all the EZP
components your program needs; your menu
definition(s), sprites and, if you want, the
ptrmen toolkit extension(s) your program uses.
EZP includes a program to build these files
from the output files produced by EasyMenu
and EasySprite. The APPA file needed here
must contain the menu definition plus the corner
sprite described above. They can then be
accessed by the program as APPA0(“wresz”)
(the menu) and APPA0(“CornB”) (the corner
sprite).

Below is the code to make it all work. Only
salient points are commented and the comments
relate to the block immediately above unless
otherwise stated:

1 REMark $$chan=6
2 REMark $$stak=360
3 REMark $$heap=1600
4 REMark $$asmb=ram1_rz_Wresz_app,0,60
5 :
6 rem Interactive Move and Resize Demo
7 rem by pjwitte jan 2oo9. V1a01
8 :
9 rem Requires SMSQ/E + ptrmen
10 rem Compile with QLIB
11 rem Compiled should run under QDOS
12 :
Standard header showing files to be included.
During testing these files should be LRESPRed.

13 rem Menu definitions
14 awmv% = 1: rem Move
15 awcr% = 2: rem Corner right
16 awcb% = 3: rem Corner bottom
17 awin% = 4: rem Main app win
18 liqu% = -1: rem LI quit
19 limv% = -2: rem Hidden LI Move
20 lirz% = -3: rem Hidden LI Resize

These are the object numbers relating to the
menu elements. Ill use the mnemonics to refer
to the relevant object. Thus awmv refers to the
Move AW. (Here awrz => awcr and awcb.)
21 mvec% = 1+2+8:rem Return conditions
22 irt% = 48: rem Immediate return
23 dim pv%(16): rem Pointer Record
24 :
25 rem Misc definitions
26 esc% = 27: rem ESCape
27 kcf3% = 241: rem Key CF3 - Wresz
28 kcf4% = 245: rem Key CF4 - Wmove
29 wwd = 0: rem -> Window Working Def
30 :
31 sp_winbg% = 513: rem Window backg
32 sp_winfg% = 514: rem Window foreg
33 ww_xorg = 36:rem WWD offset $24
34 ww_yorg = 38: rem WWD offset $26
35 :
36 rzbt% = 4: rem Resz border thick
37 rzbc% = 228: rem Resz border colour
38 minx% = 200: rem Min window size
39 miny% = 140: rem (from menu)
40 sizx% = minx%: rem Start size = min
41 sizy% = miny%
42 posx% = -1: rem Start position
43 posy% = posx%
44 k = 0: stat% = 0: rem GLOBal
45 :
46 x% = 0: y% = 0: rem Scratch
47 :
Some definitions, variable and constant.

48 rem Program start
49 SetWin
50 :
51 REPeat main
52 k = MCALL(#cw\ k, stat%)
53 sel on k
54 = liqu%: mclear#cw: close: stop
55 = limv%, awmv%: MoveWin
56 = awcb%, awcr%: ReszWin
57 = lirz%: ReszWinBRC
58 endsel
59 END REPeat main
60 :
Main program loop. This is a standard menu call
(MCALL). It triggers when the user interacts
with one of the objects, whether they be loose
items (LIs) or application windows (AWs). The
ESC button, referred to as liqu (LI quit), is
quite standard. However, the window move
routine, MoveWin is triggered both by the
hidden LI, limv, and a user click on the titlebar
AW, awmv. The MoveWin routine will sort out
whether the CF4 function key has been pressed
or whether this is an interactive move.
Note that the handling of LI keystrokes, have to

be processed in each AW handler or else they
are just ignored: Only if the pointer is outside
any AWs with a handler, do they get processed
in the main loop.
Should your pointer hover about one of the
BRC AWs, the PI will take care to display the
corner sprite. If you then click on one of those
AWs, ReszWin, the awrz handler, is reached.
Finally, the hidden LI, lirz, gets it if the CF3
key gets pressed. This drops directly into the
interactive resize routine, ReszWinBRC.

61 deffn ReadAW%(awno%)
62 loc k%
63 rem GLOBal cw, mvec%, pv%
64 rem Read an App Window
65 :
66 rdpt#cw; mvec%: pval#cw; pv%
67 if (pv%(2) + 1) <> awno%: ret esc%
68 k% = pv%(6)
69 if k% = esc% then
70 rem Centre pointer in awin%
71 rdpt#cw; irt%, posx% + sizx% / 2,
 posy% + sizy% / 2
72 endif
73 ret k%
74 enddef ReadAW%
75 :
This is a general AW scanner, called by the AW
handlers. It returns if the pointer moves out of
the relevant AW or if ESC is pressed. If ESC is
detected, it centres the pointer in the program
window and returns. This behaviour is designed
to get the pointer out of the AW and put it
somewhere central where any further keystroke
commands may be listened for – in this case
only Quit.

76 defproc SetWin
77 rem GLOBal cw, cd, .siz%, .pos%
78 rem Open main window, get position,
 attach & format display window
79 :
80 cw = fopen("con_")
81 cd = fopen("con_")
82 mdraw#cw; appa0('wresz'), posx%,
 posy%, sizx%, sizy%
83 wwd = mwdef(#cw)
84 posx% = peek_w(wwd + ww_xorg)
85 posy% = peek_w(wwd + ww_yorg)
86 mwlink#cw, awin%, #cd
87 wm_paper#cd; sp_winbg%
88 wm_ink#cd; sp_winfg%
89 rem Display some text
90 enddef SetWin
91 :
This routine merely opens the consoles and
draws the program window. It also opens a

channel that is linked to awin; any window IO
sent to that channel [#cd] will appear in awin. A
call to display some text was removed from line
89 as the routine would unnecessarily lengthen
the listing, but thats where the action could go.

92 defproc MoveWin
93 loc aml, k%
94 rem GLOBal cw, k, posx%, posy%
95 rem Move by WM_MOVEMODE or by key
96 rem Read Move AW
97 :
98 if k = limv% then
99 WinMove: rem Move by key
100 else
101 rep aml
102 k% = ReadAW%(k)
103 sel on k%
104 = esc%: exit aml
105 = 1, 2: wmov#cw; -1: exit aml
106 = kcf4%: WinMove: exit aml
107 = kcf3%: ReszWinBRC: exit aml
108 endsel
109 endrep aml
110 endif
111 posx% = peek_w(wwd + ww_xorg)
112 posy% = peek_w(wwd + ww_yorg)
113 enddef MoveWin
114 :
This is the window move handler. Firstly, if
CF4 was pressed while the pointer is in any
other location than awmv, a window move,
using EZP's internal routine, ie saving the
relative positions of all the window components,
is performed. Otherwise, the pointer is in
awmv, and the AW handler is called to read
events in that AW. If user presses a HIT or DO
while in awmv he means to move the window
interactively using Wman. Finally, what if the
pointer is in awmv and the user presses CF3
(line 107)? He wants to resize, of course, so
interactive resize is initiated immediately. The
new x/y positions are fetched directly from the
Window Working Definition [WWD].

115 def proc WinMove
116 loc x%, y%
117 rem Use Wman routine
118 :
119 x% = -1: y% = x%
120 rdpt#cw; irt%, x%, y%
121 x% = x% - peek_w(wwd + ww_xorg)
122 y% = y% - peek_w(wwd + ww_yorg)
123 wmov#cw: rem Move, keep layout
124 rdpt#cw; irt%, x%, -y%
125 enddef WinMove
126 :
This wrapper for WMOV saves and restores the

pointer position. I find it annoying that the
pointer jumps to the TLC every time I do a
window move by keystroke. Using
WMOV#cw;-1, which deploys the internal
Wman routine, leaves the pointer in situe an
restores it on exit, but it also messes up the
window furniture and I have as yet found no
work-around. Here I read the current position
(line 120), make the positions relative to the
window origin, perform the move, and finally
restore the position.

127 defproc ReszWin
128 loc wsl, k%
129 rem GLOBal cw, k, posx%, posy%
130 rem Read BRC AWs
131 rep wsl
132 k% = ReadAW%(k)
133 sel on k%
134 = esc%: exit wsl
135 = kcf3%: ReszWinBRC
136 = 1, 2: ReszWinBRC
137 rem Restore pointer
138 rdpt#cw; irt%, (sizx%), -(sizy%)
139 = kcf4%: k = limv%: MoveWin
140 exit wsl
141 endsel
142 endrep wsl
143 enddef ReszWin
144 :
The handler for awcr and awcb. Pretty much as
for MoveWin. As it doesnt know which of the
two corner AWs it will be reading, it supplies
the universal variable k, returned from MCALL,
to the AW reader, which works for either.

145 defproc ReszWinBRC
146 loc rzl, cz, ymx%, px%, py%, xl%
147 loc ox%, oy%, cx%, cy%
148 rem GLOBal cw, pv%, sizx%, sizy%
149 rem GLOBal posx%, posy%, rzbt%,..
150 rem Interactive resize routine
151 :
152 rem Store current pointer position
153 cx% = -1: cy% = cx%
154 rdpt#cw; irt%; cx%, cy%
155 :
156 rem Make relative
157 cx% = cx%-peek_w(wwd + ww_xorg)
158 cy% = cy%-peek_w(wwd + ww_yorg)
159 :
160 rem Work out max screen space,
161 rem draw window & set outline
162 flim#cw; xmx%, ymx%, ox%, oy%
163 xmx% = xmx% - posx%
164 ymx% = ymx% - posy%
165 ox% = sizx% - rzbt%
166 oy% = sizy% - rzbt%
167 close#cd: close#cw

168 cz = fopen('con_')
169 outl#cz;xmx%,ymx%,posx%,posy%,0,0,0
170 :
171 rem Draw initial window box
172 over#cz; -1
173 :
174 rem left, right, top, bottom
175 block#cz; rzbt%,sizy%,0,0, rzbc%
176 block#cz; rzbt%, oy% - rzbt%, ox%,
 rzbt%, rzbc%
177 block#cz; ox%, rzbt%,rzbt%,0,rzbc%
178 block#cz;ox%,rzbt%,rzbt%,oy%,rzbc%
179 :
180 rem Set appropriate resize pointer
181 rem sprite and put in BRC
182 sprs#cz; appa0('CornB')
183 x% = posx% + sizx% - rzbt%
184 y% = posy% + sizy% - rzbt%
185 px% = sizx%: py% = sizy%
186 :
187 rem Draw outline interactively
188 rep rzl
189 rdpt#cz; mvec%, x%, y%
190 pval#cz; pv%
191 if pv%(5) <> 0: exit rzl
192 if pv%(6) = esc% then
193 py% = sizy%: px% = sizx%
194 exit rzl
195 endif
196 rem Pointer x/y-position
197 px% = pv%(3): py% = pv%(4)
198 rem Test limits
199 if px% < minx%: px% = minx%
200 if py% < miny%: py% = miny%
201 if px% > xmx% - rzbt%: next rzl
202 if py% > ymx% - rzbt%: next rzl
203 if px% <> ox% or py% <> oy% then
204 rem Blank and draw t, b, l & r
205 block#cz; ox%, rzbt%, 0,0, rzbc%
206 block#cz; px%, rzbt%, 0,0, rzbc%
207 block#cz; ox% - rzbt%, rzbt%,
 rzbt%, oy%, rzbc%
208 block#cz; px% - rzbt%, rzbt%,
 rzbt%, py%, rzbc%
209 block#cz;rzbt%,oy%,0,rzbt%,rzbc%
210 block#cz;rzbt%,py%,0,rzbt%,rzbc%
211 block#cz; rzbt%, oy% + rzbt%,
 ox%, 0, rzbc%
212 block#cz; rzbt%, py% + rzbt%,
 px%, 0, rzbc%
213 ox% = px%: oy% = py%
214 endif
215 endrep rzl
216 :
217 close#cz
218 rem Set new size
219 sizx% = px%: sizy% = py%
220 SetWin
221 if cx%<=sizx% and cy%<=sizy% then
222 rem Restore pointer
223 rdpt#cw; irt%, cx%, -cy%
224 else
225 rdpt#cw; irt%, (sizx%), -(sizy%)
226 endif

227 enddef ReszWinBRC
228 :
The final routine here, is also the most complex.
It is arrived at either by clicking one of the
resize AWs or by pressing the CF3 key
anywhere in the window. First the current
pointer position is saved in case the routine was
reached by keystroke. Then the old program
window has to be thrown away and a new
window opened, wherein the resize outline, or
box, will be drawn. The size of this window
need not take up the whole screen, only that part
that encompasses the maximum extent that any
new window can be redrawn, starting at the old
window's origin. A box outline of the old
window is drawn for starters (lines 171+) and
the pointer sprite is set to be the corner sprite.
The loop (188+) reads the pointer, returning on
a keystroke, key down or pointer moved event.
(mvec% = keystroke + key down + pointer
moved). Sadly, Wman does not recognise the
key up event when initially reading a new
channel (it always assumes that key up is the
initial state). This means you cant just let go of
the mouse button to simulate a “drop” as in
drag and drop; you have to click a second time
to terminate the resize operation. This may be a
bug, and may therefore one day get fixed. Line
191 says that if the user clicks a second time
(the click that got us here was processed
elsewhere), to terminate resize with the current
size. 192 says that if ESC is pressed resize is
aborted and the size reverts to the starting size.
If none of these events occurred, the size is read
(197+) and tested against the limits to see
whether it is legal. If the size passes all the tests
and is different from the old size (203), the old
outline is blanked (un-XORed out) and a new
box is drawn at the new size. This continues
until the user is satisfied and terminates (or
aborts) the operation. Finally, the drawing
window is discarded and a new program
window drawn with the new size. The pointer is
placed at its old position, provided it still fits
inside the window, otherwise it is placed at the
BRC.

It is not difficult, but it is extremely fiddly to
achieve the effect you want, as the tiniest
tweaks can alter the behaviour of the interface.
Im looking forward to seeing more PE programs
that use interactive resize!

